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Abstract 
Not only has the number of JPL spacecraft launched per 
year exploded over the past few years, but also the 
spacecrafts’ behaviors are getting more complex as flyby 
missions give way to remote orbiters, which in turn give 
way to rovers and other in situ explorers.  With this 
complexity there comes an increased need for rapid 
response to execution uncertainties arising from dynamic 
partially-understood environments.  Thus operations staffs 
are forced to ever more rapidly generate and uplink short 
sequences.  For instance the Mars Exploration Rovers’ 
staffs had to analyze downlinked data and generate a new 
set of commands every Martian day during the mission.  To 
speed up the activity planning process while keeping 
operators fully in control, this paper describes a set of 
simple useful commands for manually building plans 
without leaning on the machinery of an automated planner. 

Introduction 
While past flight projects had the luxury of weeks to 
generate a spacecraft sequence, present missions like the 
Mars Exploration Rovers (MER) and future ones like the 
Mars Science Laboratory (MSL) and Dawn need to build 
sequences for an uplink within hours.  While MER’s use of 
the MAPGEN planning environment [Bresina et al. 2005] 
improved the feasibility of rapidly generating a plan, there 
were occasions when it hindered operators from making 
straight forward changes.  MAPGEN helped an operator 
maintain the validity of a plan’s constraints, but it also 
hindered an operator from invalidating constraints at any 
time.  This has forced operators to perform unintuitive plan 
manipulations to make simple changes. 

For example, it was common for the operator (the 
Tactical Activity Planner in MER’s prime mission) to wish 
to place a particular set of activities one after another, as a 
starting point for a plan, while maintaining the ability to 
change order later.  Making such a chain of activities often 
required introducing one activity at a time into its 
approximate desired location in the timeline, and then 
shifting it to a start time equaling the end time of the 
previous activity.  In other cases, features of the MAPGEN 
environment could be used to create a chain of activities, 
by placing them in the correct order manually and then 
dragging the right-most one, causing the group to align 
themselves one immediately after the other like a row of 

boxcars.  This method would work if the activities were 
sorts that MAPGEN knew could not overlap.  But that 
knowledge could sometimes get in the way.  Many 
activities could not overlap communications activities, so 
pushing an accumulating chain from after to before a 
comm activity was not possible.  One trick that was 
sometimes employed was to delete the comm activity 
temporarily to allow such movement.  Such a deletion is 
highly unintuitive, since the comm activities were 
generally the only ones that were known ahead of time and 
fixed in time, and since it would be a major mistake to 
forget to re-insert the comm activity.  As another example, 
to swap the positions in the timeline of two activities, it 
was often necessary for the operator to delete one activity 
from the plan, move the other activity to its new position, 
and then insert the deleted activity.  These sorts of 
unintuitive and somewhat roundabout steps ate up valuable 
time in the tight operations schedule for producing a plan, 
and added a bit to the specialized training needed by a user. 

This paper takes a more human centered approach 
toward mixed initiative planning, where operators 
manipulate a plan instead of guiding a planner, letting them 
make any plan manipulation including those that make a 
plan inconsistent.  Instead of enforcing consistency at all 
times, this approach allows constraint breaking and helps 
an operator manipulate a plan to improve its consistency.  
As such, this paper presents three contributions.  First it 
shows how to add a constrained-move functionality to any 
plan manipulation interface without including a general 
purpose planner.  Second it shows how a constrained move 
can be used to manipulate plans even when they have 
inconsistent constraints. Finally, it defines a number of 
drudgery relieving commands identified during MER 
operations and shows how to combine them with constraint 
enforcement.  

In the next section we introduce planning constraints 
and describe how they are defined in terms of temporal 
constraints.  The next two sections show how constrained 
move maintains a set of consistent constraints and how to 
support satisfying violated constraints even when the full 
set is inconsistent.  Given this improvement to constrained 
move, the subsequent sections define a set of drudgery 
relieving plan manipulation commands, place this work in 
the context of related work on mixed initiative planning, 
and finally conclude. 



Planning Constraints 
In general, plans are represented as sets of temporally 
constrained activities, where each activity may or may not 
have an assigned start time depending on whether or not 
there is a desire to maintain temporal flexibility.  Typically 
manual ground operations planners work with fixed start 
times to simplify reasoning about a plan.  This facilitates 
drawing activities as boxes on a screen, which an operator 
drags left/right to change their start times.  For the purpose 
of this paper, we will stick to fixed time planning as it is 
typically used in graphical based manual plan editors.  As 
such, each activity in a plan has the eight following fields 
in addition to activity types and parameters. 

• start – the start time 
• duration – how long the activity lasts 
• temporals – explicitly required temporal constraints 
• MUTEXs – other activities that are mutually exclusive  
• pinned – boolean for freezing at current start time 
• constraints – valid constraints with transitive closure 
• earliest – inferred earliest possible start time 
• latest – inferred latest possible end time 

While an activity’s start, duration, pinning, earliest, 
and latest fields contain integers, its MUTEXs field is a 
possibly empty set of pointers to other plan activities that 
are not allowed to overlap with it.  Finally, temporals and 
constraints contain sets of constraints with the form 

(A, [lowest, highest], B), 
where A is the current activity and activity B is temporally 
constrained such that  

A.start + lowest ≤ B.start ≤ A.start + highest. 
While most of the fields are manually set and altered, 

the last three are computed. Essentially, the MUTEXs, 
temporals, and pinning combine to set the initial set of 
constraints, and an algorithm for solving the all-pairs 
shortest path problem computes the transitive closure over 
a simple temporal network [Dechter 2003].  The Floyd-
Warshall algorithm computes such a closure in O(n3) time. 

For instance, Figure 1 illustrates four activities with 
three temporal constraints that make them occur serially 
with the second occurring within a time bound after the 
first, and the three extra constraints are from the temporal 
closure.  Actually each illustrated constraint refers to two 
constraints.  In the case of the rightmost constraint in the 
diagram, the two constraints are  

(C,[C.duration, inf], D) ∈ C.temporals and 

(D, [−inf, −C.duration], C) ∈ D.temporals. 

More precisely, each B pointed to in A.MUTEXs 
determines a constraint  

(A, [−inf,−B.duration], B) or (A, [A.duration, inf], B) 
A succeeds or precedes B respectively.  Since pinning 
explicitly freezes an activity’s start time, an activity A’s 
pinned flag’s truth would turn into constraint 

(e, [A.start, A.start], A), 
where “e” refers to an initial epoch at time “0” such that 
activity A starts A.start time units after “e”.  Finally 
A.temporals are added to A.constraints without 
modification, and the result is used to compute the 
transitive closure. 

Active Constraint Enforcement 
The arguably most used feature of MAPGEN was its active 
constraint enforcement.  This feature lets an operator 
change a selected activity and has other activities change to 
enforce the constraints.  For instance, an operator moves 
activities as shown in Figure 2.  At the start (t1) the 
operator selects the middle two activities and subsequently 
drags them to the right.  During the drag the third activity 
meets the fourth (t2) and active constraint enforcement 
then starts moving the fourth activity also.  If the operator 
keeps dragging the selected activities, enforcing the 
required proximity between the first two activities will start 
moving the first activity too (t3). 

At first glance, active temporal constraint enforcement 
looks rather complex in that there is a network of activities 
and constraints, and constraint enforcement requires 
determining which activities to move to keep current 
constraints satisfied.  In actuality, the process is fairly 
simple after computing the transitive closure of temporal 
constraints.  Given this closure, Algorithm 1 implements 
moves with active constraint enforcement in O(sn) time, 

For each A ∈ SELECTED { 
 A.start ← A.start + ∆ ; 
    For each (A,[Lowest,Highest],B) ∈ A.constraints do 
  If B ∉ SELECTED then 
      B.start ← max( A.start + Lowest,  
    min(A.start + Highest, B.start )) } 

Algorithm 1. Moving selected activities by ∆ (positive 
or negative) while maintaining constraints 

selected 
t1: 

t3: 

t4: 

t2: 

Figure 2. Four instants in a constrained move for a 
selected set of activities

Constraints from transitive closure: 

Figure 1. Example set of four temporally constrained 
activities and transitive constraint closure 

A B C D 



where s and n denote the number of selected activities and 
the total number of activities. 

The main points to observe is that the transitive closure 
short circuits the need to traverse the graph of constraints 
and activities to determine which activities to move.  This 
traverse is captured in the closure.  Thus iterating through 
A.constraints finds all activities that need to be moved, 
and the new values are computed in the max-min equation.  
Essentially the max() moved activities to the right to 
maintain the lower bounds, and the min() moves them to 
the left to maintain the upper bounds. 

Dragging and Nudging 
At its most basic, an operator alters an activity’s start time 
earlier or later by either dragging it or nudging it to the left 
or right respectively.  In the case of nudging, pressing a 
key will move the activity by a preset step size.  Dragging 
moves the activity by some arbitrary delta depending on 
how far the activity is dragged.  While these features are 
endemic to any graphical plan editing interface, combining 
this with active constraint enforcement results in limiting 
how far an activity might be dragged.  For instance, 
suppose that the leftmost activity in Figure 2 was pinned to 
its current location.  In this case the illustrated drag would 
stop at time t3 due to the constraints keeping the activities 
from moving. 

Algorithm 2 shows how simple it is to correctly 
constrain dragging and nudging in O(s) time after 
computing the transitive closure.  One of the side effects of 
computing the transitive closure with respect to an initial 
epoch “e” is knowledge of the earliest and latest times 
when an activity can start.  With this information clipping 
delta to restrict a drag or a nudge is a matter of reducing its 
absolute value to keep all of the selected activities from 
moving out of their earliest-latest start time bounds.  All of 
the other activities are kept in their start time bounds by 
virtue of the transitive closure. 

 
 
 
 
 
 

Jumps 
While dragging and nudging suffice for moving activities 
around, they are also relatively imprecise in that it is easy 
to nudge one too many times or drag an activity too far or 
not far enough on an activity display.  For this reason, we 
introduce other moves to qualitatively interesting points.  
The first such move is to “jump” a set of selected activities 
to the left or right until any loose constraint becomes taut, 
which will increase the number of moving activities on the 
next jump.  For instance, the first three lines in figure 2 
correspond to jumps. 

Jumping selected activities forward in time is a matter 
of computing the desired delta with Algorithm 3, limiting 

delta with Algorithm 2, and then performing the move with 
Algorithm 1.  Given these algorithms, a jump can be 
performed in O(sn) time, and the steps for computing left 
jumps have the same structure and time complexity.  

 
 

 
 
 
 
 
 
 

Hops 
While jumping is useful, it is quite conceivable that 
jumping will move a set of activities too far.  In this event, 
another qualitative movement called a “hop” moves a set 
of activities until any two temporally ordered time points 
become simultaneous.  With this move any two unrelated 
activities can be moved back to back or to start/end at the 
same time. 

Algorithm 4 shows how to compute the deltas ∆L and ∆R 
for left and right hops respectively.  It starts by computing 
the deltas for left and right jumps and then reduces the 
magnitudes of these deltas by analyzing the time points 
from earliest to latest to find the two closest points that 
would be made simultaneous by moving left/right.  The 
time complexity of this algorithm is O(sn) due to 
computing the jump deltas and O(nlog(n)) for reducing the 
magnitudes, due to a need to order the time points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Building Plans 
So far the focus here has been on activity movement, but 
the previously described MER experience also points to 
simple drudgery relieving commands when adding 
activities, but they are manual.  While most approaches 
toward planning focuses on representing activities and how 

Let ∆L ← −leftJump() and ∆L ← rightJump(); 
Let POINTS be the points that start/stop activities; 
Let L be the tuple 〈t ← 0, stay ← false, move ← false〉; 
Let R be the tuple 〈t ← 0, stay ← false, move ← false〉; 
For each P ∈ POINTS ordered from first to last do { 
 If P.time ≠ R.time then { 
  L ← R; R.stay ← false; R.move ← false; R.t ← P.t; } 
 If P starts/stops an activity that will move  
  then R.move ← true  
  else R.stay ← true; 
 If L.move and R.stay then ∆R ← min(∆R, R.t − L.t); 
 If R.move and L.stay then ∆L ← min(∆L, L.t − R.t); } 
Return ∆R or −∆L depending on right or left hop 

Algorithm 4. Computing ∆ for hopping left or right to a 
point where two time points will change ordering. 

Let ∆ ← infinity; 
For all A ∈ SELECTED do { 
 ∆ ← min(∆, A.latest − A.start);  
 For each (A,[Low,High],B) in A.constraints do 
  If (B ∉ SELECTED & A.start + Low < B.start) then 
   ∆ ← min(B.start − (A.start + Low), ∆) } 

Algorithm 3. Computing ∆ for jumping activities right 
(later) to the point where the next stationary activity 
starts moving 

For all A ∈ SELECTED { 
 LIMIT ← max(A.earliest,  
    min(A.latest, A.start + ∆)) − A.start;  
 if ∆ < LIMIT ≤ 0 or 0 ≤ LIMIT < ∆ then ∆ ← LIMIT } 

Algorithm 2. Limiting ∆ based on activity constraints 



to automatically add and schedule them to achieve goals, 
this approach becomes problematic when the precise 
resource needs, preconditions, and effects of activities are 
not known at plan time.  This was often the case during 
early operations – a time when the activities were often 
specialized to squeeze as much performance as possible 
from a rover.  Typically activity definitions evolve over 
time to have numerous parameters that combine in 
complex ways to determine preconditions, effects, and 
resource needs. 

While the ASE experience [Chien et al. 2005] on the 
EO1 satellite showed that modeling these activities for 
automated planning is possible, ASE was not developed 
until after EO1 had been in orbit for a year.  During early 
operations the drive is to build plans manually and 
simulate them in order to determine correctness as the 
planned activities get progressively better defined.  Still, 
even without complete activity definitions, coarse 
properties like timing and mutual exclusion relationships 
between can be defined and used early in the planning 
process. 

Adding Activities and Constraints 
There are many ways to manually add activities to a plan, 
but they all derive from a copy/paste metaphor where the 
activities are copied from an activity dictionary or from 
elsewhere in the plan.  The main point where they differ 
revolves around how to paste them into a plan.  The 
simplest way is to require explicit manual placement of the 
pasted activity, but that can become a bit arduous as 
described in the introduction.  Algorithm 5 shows how to 
perform a simple insertion of activities from left to right in 
constant time, and the algorithm for adding from right to 
left would be identical except for the computation of 
B.start. 
 
 
 
 
 
 
 

Adding constraints is a matter of selecting activities and 
choosing how to constrain them by adding temporal 
constraints to each activity’s temporals set.  During early 
MER operations, two useful drudgery relieving commands 
related to adding constraints were determined: freeze-
temporal-relations to freeze the relative start times of a 
selected set of activities and freeze-ordering-relations to 
freeze the ordering of start and endpoints of a selected set 
of activities.  In the case of a freeze-temporal-relations 
command, all that is needed is to add constraints between 
any one selected activity and all of the others to fix the 
relative start times of the activities.  Freezing the ordering 
requires a little more effort to constrain the order of each 
pair of selected activities.  In both cases the complexity of 
these commands is O(n3) due to their requiring a transitive 
closure computation.  Related unfreeze commands were 

also determined to be useful and are simply a matter of 
removing the constraints added by a freeze and then 
updating the transitive closure.  Thus these commands also 
exhibit an O(n3) time complexity. 

Supporting Inconsistent Constraint Sets 
While freezing is guaranteed to add constraints that are 
consistent with the current plan, it is possible to add 
constraints that are not consistent.  An activity can be 
inserted on top of another to invalidate a MUTEX relation 
or a temporal constraint might be added that cannot be 
satisfied while enforcing all of the other temporals.  While 
we can specify an inconsistent constraint, adding it to the 
plan invalidates the transitive closure, and determining 
which constraints are at fault, to find a maximally sized 
consistent subset, is a nontrivial problem. 

By far the easiest way to deal with this problem is to 
only enforce constraints that currently hold.  In this event 
Algorithm 6 is used to determine which constraints to 
actively enforce depending on whether or not the user 
wishes to enforce temporal constraints and/or mutual 
exclusion constraints.  Notice that in each case a constraint 
is added to CONSTRAIN only if it already holds.  Thus an 
operator can select which valid constraints to enforce and 
then update the enforced constraints as subsequent activity 
movement makes them hold, and an enforcement update 
will never unexpectedly move an activity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In general, this approach to constraint enforcement lets 
the operator choose which constraints to actively enforce 
and then facilitates manipulating a plan to monotonically 
reduce the number of unsatisfied constraints.  In all cases 
the operator is given the power to break a constraint at any 
time and then the tools to remove the drudgery from 
repairing the breaks. 

Computing Transitive Closures 
As previously mentioned, the simplest way to compute the 
transitive closure of a set of temporal constraints involves 

When SELECTED has only one activity A 
Add new activity B with B.start ← A.start + A.duration 
SELECTED ← {B} 

Algorithm 5. Chain-anchor-first to add activities from 
left to right. 

Let CONSTRAIN ← { }; 
For each activity A do {  
 If enforcing temporals then 
  For each (A,[Low,High],B) ∈ A.temporals do 
   If Low ≤ B.start − A.start ≤ High then 
    Add (A,[Low,High],B) to CONSTRAIN;  
 If enforcing MUTEXs then 
  For each B ∈ A.MUTEXs do 
   If A starts before B and does not overlap then 
    Add (A,[A.duration,inf],B) to CONSTRAIN;  
 If A.pinned = true  
  then Add (e,[A.start,A.start],A) to CONSTRAIN 
  else Add (e,[0,inf],A) to CONSTRAIN } 
Update each activity’s constraints, earliest, and latest 

values with results of calling Floyd-Warshall algorithm 
to compute transitive closure of CONSTRAIN. 

Algorithm 6. Updating enforced constraints. 



an adaptation of the Floyd-Warshall algorithm [Dechter 
2003].  For the case of our work, this adaptation takes the 
form of Algorithm 7, where the O(n3) time complexity 
comes from the third nested FOR loop.  The first two loops 
initialize an n by n distance matrix where n is the number 
of activities.  They work by first assuming infinite 
distances between activity start times and then reducing 
these distances for each temporal constraint.  The third 
nested loop is the heart of the Floyd-Warshall algorithm, 
which computes the transitive closure of the distances to 
solve the all-pairs-shortest-path problem.  Given this 
solution, the fourth loop sets each activity’s earliest and 
latest possible start times, and the fifth loop sets the 
relative constraints among activities. 

 

 

 

 

 

 

 

 

 

 

 

 

For example, Figure 3 denotes the constraints alluded to 
back in Figures 1 and 2, where the activity durations are 5 
time units long and the start time of activity B is less than 
10 time units after the start time of activity A.  All 
activities start after a set epoch time “e”, resulting in the 
[0,∞] arcs.  Finally, the [5,∞] arcs come from the 
requirement that activities C and D are consecutive after B. 
 

 

 

 

 

 

 

 

 
Given our example, the first two loops compute the 

drow,column distance matrix in Figure 4.  Explaining this 
computation comes from the observation that a constraint 
(Ai, [low,high], Aj) denotes the two equations: 

Ai.start − Aj.start ≤ high and 
Aj.start − Ai.start ≤ -low. 

Thus this matrix has zero elements on the diagonal since 
the distance for an activity to itself is zero, and the 
elements above the diagonal denote limits from highs and 
the elements below the diagonals denote negatives of limits 
from the lows. 

 
 
 

 

 

 

 

 

 

 
While the above matrix encodes all of the information 

from CONSTRAIN, computing the transitive closure with 
Algorithm 7’s third loop to get Figure 5 makes this 
information easier to work with.  For instance, the original 
constraint was for activity C to occur after the epoch time, 
but computing transitive closure shows us that C cannot 
occur in less than ten time units after epoch.  As the fourth 
loop shows, each activity’s earliest and latest start times 
can be quickly read off of the first column and row 
respectively, and the fifth loop computes the constraints in 
Figure 6. 

 
 

 

 

 

 

 

 

 

 

Actually, Figures 3 and 6 are not precisely correct due 
to the fact that they only show half of the constraints.  
Essentially, for each (Ai, [low,high], Aj) constraint shown 
in the figures there is annother (Aj, [-high,-low], Ai) 
constraint in the graph.  These constraints add no 
information to the transitive closure computations, but they 
are computed by Algorithm 7 and required by the 
algorithms that implement constrained moves and other 
drudgery relieving commands. 
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Figure 4. Matrix representation drow,column of 
constraints among activity start times. 

For i ← 1 to n do 
 For j ← 1 to n do 
  if i = j then dij ← 0 else dij ← inf; 
For each (Ai, [low,high], Aj) ∈ CONSTRAIN do { 
 dij ← min(high, dij); dji ← min(−low, dji) }; 
For k ← 1 to n do 
 For i ← 1 to n do  
  For j ← 1 to n do dij ← min(dij, dik + dkj); 
For i ← 2 to n do { 
 Ai.constraints ← { }; Ai.earliest ← −di1; Ai.latest ← d1i }; 
For i ← 2 to n do 
 For j ← 2 to n do 
  If |dij| ≠ inf or |dji| ≠ inf then  
   Add (Ai, [−dji,dij], Aj) to Ai.constraints;  

Algorithm 7. Computing transitive closure of 
CONSTRAIN’s constraints, where A1 is “e” 

e 
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Figure 3. Example set of constraints among activity 
start times 
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Figure 5. Matrix representation of constraints among 
activity start times after computing transitive closure 



 
 
 
 
 
 
 

 
 

 
 

 

Group Manipulations 
With our approach toward breaking and repairing 
constraints, we can now define a number of higher level 
drudgery relieving commands for manipulating groups of 
activities.  In order to keep each command’s definition as 
simple as possible, it is quite feasible for each of these 
commands to fail if disallowed by the currently enforced 
constraints, but then succeed upon relaxing constraint 
enforcement. 

Activity Set Manipulations 
The simplest of the group manipulations just iterates over a 
set of selected activities and moves them into some 
specific pattern.  Essentially three such patterns were 
determined to be useful during MER operations: 
synchronize activity start times, riffle activities to push 
them as far as possible together while maintaining their 
original ordering, and synchronize activity end times.  
Pictorially, examples of these three manipulations appear 
in Figure 7.  Notice how riffle is very similar to 
synchronize start times, with the exception that some set 
step size is added to the start times to maintain activity 
ordering. 

 
 
 
 
 
 
 
 
 
 
 

 
Algorithm 8 shows how simple any of these commands 

can be.  It just finds the time to synchronize to and 
performs a series of moves with constraint enforcement.  In 
this case the command can fail if one of the selected 
activities cannot be moved to the start time due to an 
enforced constraint, at which point an operator can just 
relax constraint enforcement if needed.  

 
 
 
 
 
 
 
 
 

There are possibilities for different versions of this 
command that break as few constraints as possible instead 
of failing.  Such versions might be more useful, but it 
would be harder to anticipate the effects of such alternative 
versions due to their unexpectedly breaking constraints.  A 
simpler version of this command would turn off all 
constraints, move, and then turn them back on.  Although 
there is a computational problem with that approach in that 
turning constraints on requires an O(n3) transitive closure 
computation.  As it stands, this algorithm takes O(sn) time.  
In general, there is a tradeoff between a version’s power, 
time complexity, and understandability.  The primary 
desire here is to keep commands as simple and fast as 
possible.  In any case, this command can be forced to 
succeed by turning constraint enforcement off. 

Cluster Set Manipulations 
Quite often a selected set of activities can be separated into 
overlapping subsets as shown at the top of Figure 8.  By 
identifying the gaps we can determine overlapping clusters 
of activities, and these overlaps often denote a desired 
absolute temporal relationship between interacting 
activities.  Cluster set manipulations move these activities 
around while maintaining the absolute temporal 
relationships of overlapping activities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Given this goal to maintain overlaps, cluster 

manipulations start with Algorithm 9 to compute the 
clusters in O(slog(s)) time, where the temporal complexity 
comes from sorting the 〈T, A〉  elements.  This algorithm 
performs this sort in order to sweep over the activities from 
left to right, identifying the subsets that do not overlap.  
The SELECTEDi subsets are progressively ordered as a 
side effect of the sweep direction. 
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Figure 6. Resultant transitive closure constraints 

Figure 8.  Three clusters of selected activities with 
three cluster manipulations: (a) splay by gap size, (b) 
cycle left, and (c) cycle right 

a) 

b)

SELECTED1 SELECTED2 SELECTED3 

c) 

synch-starts           riffle            synch-ends

Figure 7. How three simple manipulations move 
selected activities 

Let S ← A.start of the earliest A ∈ SELECTED; 
If (S < B.earliest for some B ∈ SELECTED or 
 two selected activities cannot start simultaneously) 
 then return failure 
 else for each B ∈ SELECTED do  
  move {B} by S − B.start; 

Algorithm 8. Synchronizing the start times of selected 
activities without breaking constraints. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Once the clusters are determined, a manipulation 
command becomes fairly trivial.  For instance, Algorithms 
10 and 11 perform the splay and cycle-left manipulations 
as they are illustrated in (a) and (b) of Figure 8.  In both 
cases the computations start with identifying clusters, then 
they test to determine if the activity movements are 
possible given the currently enforced constraints, and 
finally they perform the constrained moves.  In both 
algorithms StartTime() and EndTime() compute the times 
when a cluster’s first activity starts and last activity ends 
respectively in O(si) time for each SELECTEDi.  In total, 
each algorithm takes O(sn) time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Just like the activity set manipulations, cluster set 
manipulations have varying effects depending on the 
enforced constraints.  Each can fail if it will violate an 
actively enforced constraint, and each is guaranteed to only 
move activities in the currently selected set if no 
constraints are being enforced.  If a manipulation 
command can succeed with the currently enforced 

constraints, then it may move more than the selected set of 
activities just as a constrained move would have. 

Future Manipulations 
So far the described activity movement manipulations have 
taken O(sn) time, which is fast enough to appear 
instantaneous when manipulating a day’s worth of 
activities through a GUI.  There are three other 
manipulations identified during early MER operations that 
we have yet to identify the appropriate algorithm for due to 
their complexity and interaction with constrained move: 

• Spread-obey-temporal – from left to right spread 
activities later to resolve constraints without changing 
ordering; 

• Repair-if-possible – same as spread-obey-temporal, 
but can change ordering of selected activities; and 

• Repair-or-discard – same as repair-if-possible, but can 
remove activities. 

The first two commands’ implementations look like 
fairly simple constraint additions followed by a transitive 
closure computation, but their computational complexity 
rapidly explodes to NP complete problems when 
considering which ordering constraint to add to enforce 
each MUTEX relation.  The last manipulation is even 
ambiguously defined.  The question is, “Which activities 
should be discarded?”  Obviously discarding all selected 
activities and their constraints resolves all broken 
constraints, but that is not likely to be the operator’s intent.  

By virtue of their ambiguity and time complexity, these 
commands may not be ultimately useful.  Still, they were 
identified and their intuitive definitions provide a place for 
the more powerful automated planners to infiltrate into a 
plan manipulation tool. 

Related work 
As this paper’s title suggests, this work is most related to 
other mixed initiative planning systems.  Examples of 
these systems include MAPGEN [Bresina et al. 2005] to 
assisted operators in planning a MER rover’s day on Mars, 
VAL [Howey et al. 2004] with experiments on a Beagle 2 
style Mars lander domain, and PASSAT [Myers et al. 
2003] to plan missions in a special operations forces 
domain.  Given the number of hard to compare mixed 
initiative planning systems, Cortellessa and Cesta (2006) 
developed an experimental approach toward evaluating a 
mixed initiative system, which focused on two issues: how 
to make the underlying problem solver better serve users 
and how to empower users to enhance there active 
involvement in the planning process. 

Our work challenges an assumption made by most other 
related systems and exposed by this evaluation, an 
assumption that we start with an automated planner when 
building an mixed-initiative system.  Instead of starting 
with automated planners and focusing on how to make 
them work with users, this work starts with a set of 

Let  i ← 1, j ← 0, and 
 POINTS ← {〈T, A〉 | A in SELECTED and 

 T ∈ {A.start, A.start+A.duration}},  
Sort POINTS by increasing T with T = A.start points last 

for a given T; 
For each 〈T, A〉 ∈ POINTS in sorted order do { 
 If T = A.start 
  then { put A into SELECTEDi ; j ← j + 1; } 
  else j ← j − 1;  
 If j = 0 then i ← i + 1; } 

Algorithm 9.  Identifying the overlapping clusters of 
selected activities. 

Identify the M clusters of SELECTED; 
If (any move below would be constrained by A.earliest 

or A.latest for any A ∈ SELECTED) 
 then return failure; 
For i ← 2 to M do {  

move SELECTEDi by EndTime(SELECTEDi−1) − 
StartTime(SELECTEDi) + gapSize} 

Algorithm 10. Splaying a set of clusters by gapSize by 
shifting left or right depending on gapSize. 

Identify the M clusters of SELECTED 
Let S ← StartTime(SELECTED1) − 

StartTime(SELECTED2) 
If (any move below would be constrained by A.earliest 

or A.latest for any A ∈ SELECTED) 
 then return failure; 
move SELECTED1 by  

EndTime(SELECTEDM) − EndTime(SELECTED1) 
For i ← 2 to M do move SELECTEDi by S 

Algorithm 11. Cycling clusters of selected activities to 
the left, moving the first cluster to the end. 



deterministic drudgery relieving commands that users 
would like to see, and shows O(sn) algorithms that 
automate them.  There is no search or search heuristics 
underlying this planning automation, and a given command 
will always have the same effect.       

In terms of capability, MAPGEN is the most closely 
related system to this work, but our approach to active 
constraint enforcement makes no assumption that all 
constraints are valid and consistent.  Our approach only 
only enforces a subset of the valid constraints, and this 
subset can be either reduced or enlarged at any time with 
an O(n3) algorithm, where this algorithm can only enlarge 
the set to include all currently valid constraints. 

Conclusions 
The experience of constructing daily plans for the MER 
rovers represents a valuable case study for the role of 
different levels of aid that software can give the human 
planner.  Much of the operator’s time on MER was spent 
on low-level manipulations of the plan’s elements.  The 
algorithms offered in this paper strike a balance, having 
software automatically make changes to the plan, yet 
leaving the operator in complete control.  Each algorithm 
performs an action that is easily understood by the 
operator, an attribute that is vital for remaining in control, 
and each relieves the operator of some low-level drudgery.   

The constrained move functionality was very much 
used and liked by MER operators.  The algorithms in this 
paper give a variety of such functions without the need for 
a general purpose planner in the software.  In addition, the 
algorithms do not assume that at every stage the entire plan 
is consistent.  This feature gives the operator the freedom 
to concentrate on one portion of a plan and get use from 
the algorithms even if another part of the plan is broken.  

One other class of drudgery removing operations not 
addressed here involves those that add support activities.  
For instance, the MER operators found the automatic 
addition and deletion of CPU turn off commands.  While 
one can easily point to this functionality as a motivation for 
a planner, it can also be implemented using a relatively 
simple algorithm that simulates a plan and applies a few 
simple expert system rules. 

Finally, this work applies to missions where operators 
work under tight deadlines and need to maintain a detailed 
understanding of the developing plan.  Such happens when 
a mission has a large amount of operational uncertainty.  
Examples of such missions include managing rovers on 
Mars, astronauts in space, and probes orbiting asteroids 
with complex gravitational fields.  This work applies less 
when a reduced uncertainty facilitates planning a week in 
advance.  Examples of such missions include planetary 
orbiters and remote encounters.  In this class of mission, 
the operator can run advanced optimization software and 
then take the time to develop an understanding of the 
generated plan prior to uplinking it to the target spacecraft. 
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